Культура в Кушано-гуптскую эпохуСтраница 2
Среди математиков классического периода необходимо назвать имя Арьябхаты.
О значимости его труда «Арьябхатии» свидетельствует тот факт, что это сочинение являлось объектом изучения на протяжении многих столетий: последние комментарии к нему были созданы в середине прошлого века. Сочинение Арьябхаты анализировали и цитировали почти все крупные индийские ученые древности и средневековья. Математическая часть трактата, очень разнообразная по структуре, содержит много плодотворных идей, подхваченных и развитых последующими учеными как в самой Индии, так и за ее пределами. Это первое специальное научное математическое сочинение индийцев: многие математические правила дошли до нас именно в изложении Арьябхаты. Уже отмечалось, что он сформулировал первые правила в десятичной позиционной системе счисления — правила извлечения квадратного и кубического корней. Примечательно, что прием извлечения корней, которым пользуются сегодня в математике, по существу, не отличается от излагаемого Арьябхатой. В трактате имеется несколько задач, сводящихся к решению линейного уравнения с одним неизвестным. Среди них знаменитая «задача о курьерах», вошедшая в дальнейшем в мировую алгебраическую литературу. В ней требуется определить время встречи двух небесных светил, расстояния между которыми и скорости движения которых известны; решение, предложенное индийским ученым, практически не отличается от современного метода. Ряд задач в труде Арьябхаты говорит о знании квадратных уравнений, например задачи на нахождение числа членов арифметической прогрессии и на сложные проценты. Показательно, что задача на сложные проценты, как и «задача о курьерах», приводилась многими учеными не только в средние века, но и в новое время. С аналогичной задачи на сложные проценты начинал раздел о квадратных уравнениях в своем учебнике по алгебре известный французский математик и механик А.Клеро (1746).
Арьябхата внес огромный вклад в развитие теории чисел, и в частности в решение неопределенных уравнений. Первый толчок к постановке этой проблемы в Индии дали календарно-астрономические задачи, в которых нужно было определять периоды повторения одинаковых относительных положений небесных тел — Солнца, Луны, планет с различными периодами обращения. Задача сводилась к отысканию целых чисел, дающих при делении на данные числа данные остатки, т.е. удовлетворяющих неопределенным линейным уравнениям и их системам.
Неопределенными уравнениями занимался греческий математик Диофант (III в. н.э.), который искал лишь рациональные решения. Начиная с Арьябхаты индийцы давали решение этих уравнений в целых положительных числах. Вряд ли здесь можно говорить о прямом греческом воздействии на науку Индии — ученые двух культур пришли к теоретико-числовым проблемам, исходя из разных проблем, да и сами методы были различными.
Арьябхата первым в мировой математической литературе изложил приемы решения в целых положительных числах неопределенного уравнения первой степени вида ax + b = cy. Более подробно решение этим методом изложено в трудах другого крупнейшего индийского математика и астронома — Брахмагупты (VII в. н.э.).
Важное место в индийской математике занимали задачи на простое и сложное тройное правило. Хотя его знали уже египтяне и греки, индийские математики впервые выделили его в специальный арифметический прием и разработали схемы к задачам, содержащим несколько связанных пропорциями величин. Брахмагупта и позднейшие ученые добавили обратное тройное правило и правила 5, 7, 9 и 11 величин. Из Индии эти правила распространились в страны Ближнего Востока и оттуда в Западную Европу.
В алгебре крупнейшим достижением индийских математиков явилось создание развитой символики, гораздо более богатой, чем у греческих ученых. В Индии впервые появились особые знаки для нескольких неизвестных, свободного члена уравнения, степеней.
Символами служили первый слог или буква соответствующего санскритского слова.
Начиная с Брахмагупты индийские математики стали широко оперировать отрицательными величинами, трактуя положительные числа как некое имущество, а отрицательные числа — как долг. Брахмагупта описывал все правила действий с отрицательными числами, хотя ему и не была известна двузначность при извлечении квадратного корня.
Позднее индийские математики достигли огромных успехов в решении общего неопределенного уравнения второй степени с двумя неизвестными, решение которого давалось в целых положительных числах, а также в разработке отдельных задач дифференциального и интегрального исчисления. Значение Арьябхата принимал равным 3,1416, что свидетельствует о большой точности вычислительных методов. Достижения индийских математиков были восприняты учеными арабского мира, получили широкую известность на средневековом Востоке, оказали влияние и на европейскую математику.